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We present test problems that can be used to check the hydrodynamic
implementation in computer codes designed to model the implosion of a 
National Ignition Facility (NIF) capsule. The problems are simplified, yet 
one of them is three-dimensional. It consists of a nearly-spherical 
incompressible imploding shell subjected to an exponentially decaying 
pressure on its outer surface. We present a semi-analytic solution for the 
time-evolution of that shell with arbitrary small three-dimensional 
perturbations on its inner and outer surfaces. The perturbations on the 
shell surfaces are intended to model the imperfections that are created 
during capsule manufacturing.

Introduction   
Codes that model the complicated hydrodynamics of an imploding National Ignition 

Facility (NIF) capsule are an important element in the design of capsules. A persistent 
concern for code developers and users is how well these codes model reality. Two kinds 
of errors may exist in the simulation: Those due to code design and those due to code 
implementation. Design errors occur because the input parameters or the equations being 
solved do not accurately reflect the physical processes to be modeled. The process of 
confirming that the code is solving the correct equations is called code validation.

Implementation errors occur because the equations are not solved correctly. A 
modern hydrodynamic code with three-dimensional (3D) capability has more than 
500,000 lines of coding and 5,000 modules. Any mistake or bug in the coding whether 
caused by a typographical error or insufficient computing resources can affect the 
model’s accuracy. The process of confirming that the code is solving the equations 
correctly is called code verification. This paper addresses code verification through 
comparison with analytic and semi-analytic solutions of imploding shells with and 
without surface perturbations. 

Problem description and early time solution  
Consider the implosion of a thin spherical shell of outer radius a, inner radius b, 

density ρ0, longitudinal sound speed c, subjected to a pressure P(t) =P0e-αt << bulk 
modulus K, which is applied to the outer boundary. Sharp 1942, Blake 1952, and Larson 
1979, worked out the solution of the wave motion produced when a pressure is applied to 

the interior surface of a spherical cavity. Their interest was in geophysical applications 
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and seismic decoupling. Sharp restricted his studies to the case where the Lamé constants 
are equal, λ = µ, or equivalently, that Poisson’s ratio σ = 1/4. Blake did not make that 
restriction and found the general solution in the frequency domain. We can adapt these 

results to our problem if we consider a convergent (instead of a divergent) spherical wave 
and specialize to the case of a strengless shell (σ = 1/2). The expressions for the 

displacement and velocity at any location R reduce to:
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Where τ, the retarded time, is given by t-(a-R)/c. The jump-off velocity, which is the 
magnitude of the instantaneous velocity at the inner surface of radius b at the time of 
arrival (τ = 0) of the first shock wave, is given by:

00 /2 ρbcaPV j = (3)
The jump-off velocity under the restriction that the applied pressure is much smaller 

than the bulk modulus is thus linearly proportional to the initial pressure P0. We now 
address the effects of small compressibility on the jump-off velocity.

Correction for small compressibility
To first order, we can account for the effect of small compressibility on the jump-off 

velocity of a thin ((a - b) / a << 1) shell by replacing the sound speed c with the shock 
speed Us = [(K + P0) / ρ0]1/2. In this approximation, Vj ~ P0 / (P0 + K)1/2. We can further 
improve the estimate by taking into account the following two effects: First, the outer 
radius, a, decreases as the shock propagates into the shell. Second, the peak pressure of a 
non-uniform shock wave decreases as a result of nonlinear propagation in the rarefaction 
following it. This second effect is sometimes referred to as “hydrodynamic attenuation” 
and has been worked out by Duvall 1962. The hydrodynamic attenuation depends on the 
spatial derivative of the pressure behind the shock front, which we linearize. 

Late-time solution of the incompressible spherical shell  
For an incompressible shell, the velocity and displacement at the inner surface can be 

reduced to two coupled first-order ordinary differential equations (ODE). These can be 
effectively solved to machine accuracy for any applied pressure using standard 
quadrature techniques. For the exponentially decaying pressure, the acceleration at the 
outer surface of the shell is given by the simple general expression:
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Where the subscript o refers to values at the outer surface, subscript i refers to values 
at the inner surface, V(t) is the velocity, R(t) is the radius, and r(t) is the ratio

)(/)( tRtR io . Equation (4) can be derived by equating the rate of change of kinetic energy
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that the particle velocity within the shell at location R is proportional to 1/R2 and the 
kinetic energy can be expressed in a closed form. Differentiation and the chain rule then 
yields Eq. (4). The two ODE’s that need to be solved simultaneously are then dVo(t)/dt = 
ao(t) where ao is given by Eq. (4), and dRo(t)/dt = Vo(t).

Correction for small compressibility
Considerable progress in developing the late-time solution for the compressible shell 

is achieved if the shell is accelerated shocklessly. We use the exponentially decaying 
pressure as the driving force and search for initial conditions that lead to shockless 
acceleration and hence analytic or semi analytic solutions. We would like the solution 
using these initial conditions to closely match the time averaged solution for the shock 
accelerated case. We thus require that the total mass and thickness of the shell in the 
shockless case be identical to that in the shock accelerated case.

The key to finding these initial conditions is to have smoothly varying pressure and 
velocity across the shell thickness at time zero. These smoothly varying functions must 
also be consistent with the equation-of-state (EOS) of the shell and the exponentially 
decaying pressure on the outer boundary.

Initial conditions leading to a shockless compression
The equations of momentum and mass conservation in Eulerian spherical coordinates 

lead to:
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Where P is the pressure, V is the velocity, ρ is the density and 
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restrict ourselves to the case of a simple yet useful EOS in which the pressure P is related 
to the compression through a bulk modulus K as follows: P = K (ρ / ρ0 – 1). In this case, 
the initial conditions for the pressure, and velocity, leading to a shockless acceleration, 
are given by the solution of the following 3 coupled ordinary differential equations:
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Subject to the boundary conditions that the pressure at the inner boundary be identically 
zero, the total momentum be identically zero, and the total mass be identical to the shock 
accelerated case. 

Effect of small surface perturbations on the sphericity of the implosion
Although 2D experiments (Weir et al., 1998) and calculations (Bakharakh et al.,
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1997) of imploding perturbed shells have been performed, we focus here on the 3D 
aspect of the problem. Analytic equations for the evolution of the perturbations were 
given by Mikalelian,1990 and applied to the case of a constant acceleration followed by a 
constant deceleration. We have extended that work to include an exponentially decaying 
pressure applied to the outer surface of the shell. The perturbed radius Rper is given as a 
function of the unperturbed radius Runp by the following equation:

),(),,( , φθη mnunpper YmntRR += (9)
Where t is the time, ),,( mntη is the amplitude of the perturbation, and ),(, φθmnY is the 
spherical harmonic. The value of the unperturbed radius is given by the late-time solution 
of the incompressible shell described in this paper. The analytic solution describe the 
evolution of each node, ),,( mntη , in terms of two coupled ordinary second-order 
differential equations (Eq. 20 in Mikaelian 1990). The amplitude of a given mode on the 
inner surface as a function of time depends on the amplitude of that mode on the outer 
surface as well as the position, velocity, and acceleration at the inner and outer surfaces. 
The analytic solution, which is exact in the limit of small perturbations, takes into 
account the feed-through effect, i.e. the interactions between perturbations on the inner 
and outer surfaces.

A question of  practical value is the following: Which surface, if any, is more 
critical in manufacturing the capsule to reduce perturbations ? To address this question, 
we applied the perturbation to only one surface at a time. We found that for thin shells
(such as the ones proposed for NIF), both surfaces are critical. This means that perfecting 
only one surface will not stop the perturbations from feeding through to the other surface.
To account for the effect of compressibility, finely zoned 1D calculations can provide the 
average position, velocity, and acceleration at the inner and outer radii for a compressible 
shell. These can in turn be used in a modified Bell-Plesset equation (Goncharov et al. 
2000, Amendt et al., 2003, Lin et al., 2002) to predict the growth of perturbations and 
compare with 3D code calculations with various resolutions.

Conclusions
The solution of the problems presented in this paper provide an independent check on 

the ability of newly developed 3D codes to model the hydrodynamics of a simplified 
implosion system. These analytic and semi analytic solutions are well suited to quantify 
numerical errors due to mesh resolution. Another benefit of these test problems is 
providing a way to compare the efficiency of various algorithms such as adaptive mesh 
refinement (Rendleman et al., 2000), or mesh free methods (Dilts, 2001).
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